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Abstract

This document serves as the theoretical manual for the Hyperbolic Grading Simula-
tor. We propose a rigorous unification of Item Response Theory (Psychometrics) and Special
Relativity. By reinterpreting a grade not as a linear score but as a normalized expected
payoff (velocity), we demonstrate an exact isomorphism between the Elo rating system and
the geometry of Minkowski spacetime. We prove that while Elo competence θ behaves like
an additive rapidity on a hyperbola, the observable grade v is its stereographic projection
onto a bounded segment.

1 The Linearity Problem
Current educational assessment suffers from an arithmetic incoherence. Grades are typically
treated linearly (N ′ = N + δ) on a bounded scale (e.g., [0, 100]). This approach fails for two
reasons:

1. Boundary Violations (Clipping): Adding points to a score of 99/100 mathematically
pushes it "outside" the scale, forcing arbitrary capping.

2. The Weber-Fechner Law: Improving from 50% to 60% requires significantly less ef-
fort than improving from 98% to 99%. Linear grading ignores the exponential cost of
approaching perfection.

Just as a particle cannot linearly accelerate past the speed of light c, a student cannot linearly
improve past 100% certainty. Therefore, grading geometry is not Euclidean; it is Lorentzian.

2 Mathematical Foundations
The core of the theory relies on a physical redefinition of the "Grade" to align it with probabilistic
truth.

2.1 The Grade as Expected Payoff (v)

Consider an assessment as a Bernoulli trial with parameter p (the intrinsic probability of success).

• Success (100%): Payoff +1

• Failure (0%): Payoff −1 (loss)

The Expected Payoff v is defined as:

v = (+1) · p+ (−1) · (1− p) = 2p− 1 (1)
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This variable v is strictly bounded on [−1, 1]. In our physical isomorphism, we identify v as a
dimensionless velocity (where c = 1).

2.2 The Elo Model (θ)

In psychometrics (specifically the Rasch or Elo models), the probability of success p is determined
by the difference in competence θ (the log-odds) between the student and the difficulty of the
task:

p(θ) =
1

1 + e−θ
(2)

Here, θ extends from −∞ to +∞. This is the invariant quantity representing "Aptitude."

2.3 The Fundamental Isomorphism

Injecting (2) into (1) yields the constitutive relation of the theory.
Theorem 1 (The Probability-Velocity Link). The expected payoff (grade) v associated with an
Elo competence θ is given by the hyperbolic tangent of the half-angle:

v = tanh

(
θ

2

)
(3)

Proof. Substituting p(θ) into the expectation formula:

v = 2

(
1

1 + e−θ

)
− 1 =

2− (1 + e−θ)

1 + e−θ
=

1− e−θ

1 + e−θ

Multiply numerator and denominator by eθ/2:

v =
eθ/2 − e−θ/2

eθ/2 + e−θ/2
=

2 sinh(θ/2)

2 cosh(θ/2)
= tanh

(
θ

2

)

This equation is remarkable. In standard Special Relativity, velocity is v = tanh(η) where η is
rapidity. In Psychometrics, the grade is v = tanh(θ/2). This suggests that Elo Competence is
twice the physical rapidity, a scaling factor naturally resolved by the geometry of projection.

3 Geometric Interpretation: Stereographic Projection
The simulator visualizes this relationship using a Minkowski diagram. We map the infinite
"Hyperbola of Competence" onto the finite "Exam Paper" via stereographic projection.
Proposition 1. If we identify Elo competence θ with the position on the unit hyperbola t2−x2 =
1, then the grade v is exactly the stereographic projection of this state onto the axis t = 0 from
the pole P (0,−1).
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Elo Hyperbola
θ ∈ (−∞,∞)

Elo Competence θ

Pole P (0,−1)

−1 +1

Bounded Grade Segment

v

v = tanh( θ
2
)

Geometric Proof: Let S(sinh θ, cosh θ) be a point on the hyperbola representing the student’s
Elo rating. The line (PS) connecting the pole P (0,−1) to S intersects the horizontal axis (t = 0)
at abscissa x. The slope of the line (PS) is:

m =
cosh θ − (−1)

sinh θ − 0
=

cosh θ + 1

sinh θ

The equation of the line is t = m · x− 1. Setting t = 0 to find the intersection:

0 = m · x− 1 =⇒ x =
1

m
=

sinh θ

cosh θ + 1

Using half-angle hyperbolic identities (sinh θ = 2 sinh θ
2 cosh

θ
2 and cosh θ + 1 = 2 cosh2 θ

2):

x =
2 sinh( θ2) cosh(

θ
2)

2 cosh2( θ2)
= tanh

(
θ

2

)
This confirms that the stereographic projection of the Elo parameter θ perfectly recovers the
expected payoff v.

4 Relativistic Adjustment (Boost)
In the simulator, changing the "Difficulty" of the exam corresponds to changing the inertial
reference frame.

If an exam has a difficulty calibration δ (also an angle on the hyperbola), the effective grade v′

is not found by linear subtraction (θ − δ). Instead, we must use the Velocity Addition Law
for the projected grades.

Let v = tanh(θ/2) be the student’s raw grade and u = tanh(δ/2) be the difficulty’s "velocity."
The observed grade vobs is:
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vobs =
v − u

1− v · u
(4)

Insight 1. This formula guarantees that vobs never exceeds ±1. It visually explains why a "hard"
exam (high u) compresses the grades of average students towards −1 (failure), while only slightly
lowering the grades of top students (time dilation effect).

5 Conclusion
The Hyperbolic Grading Simulator demonstrates that:

1. Grades are Projections: They are distorted, finite shadows of an unbounded aptitude.

2. Aptitude is Invariant: The Elo θ exists independently of the test.

3. Difficulty is Relative: It is merely the coordinate choice of the observer.

Ultimately, this framework offers a rigorous path for harmonizing assessment standards.
By explicitly calibrating the "difficulty velocity" of exams, educational institutions could math-
ematically translate grades across different schools or national systems. Just as relativity allows
physicists to reconcile observations from different reference frames, Hyperbolic Grading paves
the way for a Covariant Assessment System—one where student aptitude can be universally
compared, regardless of the local difficulty of the tests they faced.
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